# install.packages("devtools")
devtools::install_github("nickhaf/eatPlot")HTML-Folien können durch tippen von e in PDF umgewandelt werden, und dann mit Drucken aus dem Browser abgespeichert werden, falls ihr darin kommentieren wollt.

# install.packages("devtools")
devtools::install_github("nickhaf/eatPlot")Automatisiert die Grafikerstellung für eatRep-Output (vor allem BT-Grafiken).
Das Paket befindet sich noch in Entwicklung. Die Beispiele in dieser Präsentation sind vorläufig, können sich also noch leicht ändern. Ich werde alle Änderungen aber in den online-Vorlagen anpassen.


str(trend_3)List of 4
 $ plain      :'data.frame':    6642 obs. of  18 variables:
  ..$ label1       : chr [1:6642] "aohneZWH_total for year 2009" "aohneZWH_total for year 2009" "aohneZWH_total for year 2009" "aohneZWH_Baden-Wuerttemberg for year 2009" ...
  ..$ label2       : chr [1:6642] "year=2009: mhg=aohneZWH, TR_BUNDESLAND=total" "year=2009: mhg=aohneZWH, TR_BUNDESLAND=total" "year=2009: mhg=aohneZWH, TR_BUNDESLAND=total" "year=2009: mhg=aohneZWH, TR_BUNDESLAND=Baden-Wuerttemberg" ...
  ..$ depVar       : chr [1:6642] "bista" "bista" "bista" "bista" ...
  ..$ modus        : chr [1:6642] "CONV.mean" "CONV.mean" "CONV.mean" "CONV.mean" ...
  ..$ comparison   : chr [1:6642] "none" "none" "none" "none" ...
  ..$ parameter    : chr [1:6642] "mean" "Ncases" "sd" "mean" ...
  ..$ mhg          : chr [1:6642] "aohneZWH" "aohneZWH" "aohneZWH" "aohneZWH" ...
  ..$ TR_BUNDESLAND: chr [1:6642] "total" "total" "total" "Baden-Wuerttemberg" ...
  ..$ kb           : chr [1:6642] "hoeren" "hoeren" "hoeren" "hoeren" ...
  ..$ spf          : chr [1:6642] "alle" "alle" "alle" "alle" ...
  ..$ year         : chr [1:6642] "2009" "2009" "2009" "2009" ...
  ..$ es           : num [1:6642] NA NA NA NA NA NA NA NA NA NA ...
  ..$ est          : num [1:6642] 533.4 23722 81.8 543.3 1507 ...
  ..$ p            : num [1:6642] 0 NA NA 0 NA NA 0 NA NA 0 ...
  ..$ se           : num [1:6642] 0.797 NA NA 2.668 NA ...
  ..$ id           : chr [1:6642] "group_1883" "group_1883" "group_1883" "group_1887" ...
  ..$ unit_1       : chr [1:6642] NA NA NA NA ...
  ..$ unit_2       : chr [1:6642] NA NA NA NA ...
 $ comparisons:'data.frame':    3852 obs. of  4 variables:
  ..$ id        : chr [1:3852] "comp_1" "comp_2" "comp_3" "comp_4" ...
  ..$ unit_1    : chr [1:3852] "group_1883" "group_1883" "group_1887" "group_1887" ...
  ..$ unit_2    : chr [1:3852] "group_2667" "group_1887" "group_1983" "group_2667" ...
  ..$ comparison: chr [1:3852] "crossDiff" "crossDiff" "crossDiff" "crossDiff" ...
 $ group      :'data.frame':    306 obs. of  6 variables:
  ..$ id           : chr [1:306] "group_1883" "group_1887" "group_1893" "group_1899" ...
  ..$ mhg          : chr [1:306] "aohneZWH" "aohneZWH" "aohneZWH" "aohneZWH" ...
  ..$ TR_BUNDESLAND: chr [1:306] "total" "Baden-Wuerttemberg" "Bayern" "Berlin" ...
  ..$ year         : chr [1:306] "2009" "2009" "2009" "2009" ...
  ..$ kb           : chr [1:306] "hoeren" "hoeren" "hoeren" "hoeren" ...
  ..$ spf          : chr [1:306] "alle" "alle" "alle" "alle" ...
 $ estimate   :'data.frame':    6642 obs. of  7 variables:
  ..$ id       : chr [1:6642] "group_1883" "group_1883" "group_1883" "group_1887" ...
  ..$ depVar   : chr [1:6642] "bista" "bista" "bista" "bista" ...
  ..$ parameter: chr [1:6642] "mean" "Ncases" "sd" "mean" ...
  ..$ est      : num [1:6642] 533.4 23722 81.8 543.3 1507 ...
  ..$ se       : num [1:6642] 0.797 NA NA 2.668 NA ...
  ..$ p        : num [1:6642] 0 NA NA 0 NA NA 0 NA NA 0 ...
  ..$ es       : num [1:6642] NA NA NA NA NA NA NA NA NA NA ...Es gibt zwei Prep-Funktionen:
lineplot_prepped <- prep_lineplot(trend_3, subgroup_var = "mhg")tableplot_prepped <- prep_tablebarplot(trend_mw, 
                                       subgroup_var = "geschlecht",
                                       comparisons = c("none", "crossDiff"))str(lineplot_prepped)'data.frame':   612 obs. of  50 variables:
 $ unit                                             : chr  "group_1883" "group_1883" "group_1887" "group_1887" ...
 $ mhg                                              : chr  "aohneZWH" "aohneZWH" "aohneZWH" "aohneZWH" ...
 $ TR_BUNDESLAND                                    : chr  "total" "total" "Baden-Wuerttemberg" "Baden-Wuerttemberg" ...
 $ year                                             : num  2009 2009 2009 2009 2009 ...
 $ kb                                               : chr  "hoeren" "hoeren" "hoeren" "hoeren" ...
 $ spf                                              : chr  "alle" "alle" "alle" "alle" ...
 $ subgroup_var                                     : chr  "aohneZWH" "aohneZWH" "aohneZWH" "aohneZWH" ...
 $ depVar                                           : chr  "bista" "bista" "bista" "bista" ...
 $ parameter                                        : chr  "mean" "mean" "mean" "mean" ...
 $ trend                                            : chr  "2009_2022" "2009_2015" "2009_2022" "2009_2015" ...
 $ es_comparison_crossDiff_subgroupTotal            : num  NA NA 0.243 0.243 0.224 0.224 0.395 0.395 0.05 0.05 ...
 $ es_comparison_crossDiffTotal                     : num  NA NA 0.121 0.121 0.166 0.166 -0.118 -0.118 -0.39 -0.39 ...
 $ es_comparison_crossDiffTotal_subgroupTotal       : num  NA NA 0.346 0.346 0.396 0.396 0.109 0.109 -0.154 -0.154 ...
 $ es_comparison_none                               : num  NA NA NA NA NA NA NA NA NA NA ...
 $ es_comparison_trend                              : num  -0.445 -0.126 -0.373 -0.229 -0.513 -0.173 -0.352 0.022 -0.446 0.139 ...
 $ es_comparison_trend_crossDiff_subgroupTotal      : num  NA NA 2.406 1.041 0.593 ...
 $ es_comparison_trend_crossDiffTotal               : num  NA NA 0.92 -2.605 -0.824 ...
 $ es_comparison_trend_crossDiffTotal_subgroupTotal : num  NA NA 4.068 -1.303 0.852 ...
 $ est_comparison_crossDiff_subgroupTotal           : num  NA NA 20.7 20.7 18.2 ...
 $ est_comparison_crossDiffTotal                    : num  NA NA 9.93 9.93 13.26 ...
 $ est_comparison_crossDiffTotal_subgroupTotal      : num  NA NA 29.6 29.6 33 ...
 $ est_comparison_none                              : num  533 533 543 543 547 ...
 $ est_comparison_trend                             : num  -41.7 -10.9 -36.6 -20.4 -45.6 ...
 $ est_comparison_trend_crossDiff_subgroupTotal     : num  NA NA 21.8 14.09 5.47 ...
 $ est_comparison_trend_crossDiffTotal              : num  NA NA 5.03 -9.53 -3.94 ...
 $ est_comparison_trend_crossDiffTotal_subgroupTotal: num  NA NA 21.35 -6.73 12.38 ...
 $ p_comparison_crossDiff_subgroupTotal             : num  NA NA 0 0 0 0 0 0 0.16 0.16 ...
 $ p_comparison_crossDiffTotal                      : num  NA NA 0 0 0 0 0.001 0.001 0 0 ...
 $ p_comparison_crossDiffTotal_subgroupTotal        : num  NA NA 0 0 0 0 0.001 0.001 0 0 ...
 $ p_comparison_none                                : num  0 0 0 0 0 0 0 0 0 0 ...
 $ p_comparison_trend                               : num  0 0 0 0 0 0.001 0 0.695 0 0.004 ...
 $ p_comparison_trend_crossDiff_subgroupTotal       : num  NA NA 0.004 0.025 0.432 0.957 0.05 0.143 0.501 0.791 ...
 $ p_comparison_trend_crossDiffTotal                : num  NA NA 0.459 0.061 0.53 0.472 0.397 0.016 0.888 0 ...
 $ p_comparison_trend_crossDiffTotal_subgroupTotal  : num  NA NA 0.002 0.183 0.047 0.91 0.001 0.003 0.014 0 ...
 $ se_comparison_crossDiff_subgroupTotal            : num  NA NA 3.54 3.54 2.77 ...
 $ se_comparison_crossDiffTotal                     : num  NA NA 2.79 2.79 2.25 ...
 $ se_comparison_crossDiffTotal_subgroupTotal       : num  NA NA 2.76 2.76 2.22 ...
 $ se_comparison_none                               : num  0.797 0.797 2.668 2.668 2.099 ...
 $ se_comparison_trend                              : num  4.94 3.07 6.65 4.92 6.13 ...
 $ se_comparison_trend_crossDiff_subgroupTotal      : num  NA NA 7.65 6.26 6.97 ...
 $ se_comparison_trend_crossDiffTotal               : num  NA NA 6.78 5.08 6.27 ...
 $ se_comparison_trend_crossDiffTotal_subgroupTotal : num  NA NA 6.75 5.06 6.24 ...
 $ sig_comparison_crossDiff_subgroupTotal           : logi  FALSE FALSE TRUE TRUE TRUE TRUE ...
 $ sig_comparison_crossDiffTotal                    : logi  FALSE FALSE TRUE TRUE TRUE TRUE ...
 $ sig_comparison_crossDiffTotal_subgroupTotal      : logi  FALSE FALSE TRUE TRUE TRUE TRUE ...
 $ sig_comparison_none                              : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ sig_comparison_trend                             : logi  TRUE TRUE TRUE TRUE TRUE TRUE ...
 $ sig_comparison_trend_crossDiff_subgroupTotal     : logi  FALSE FALSE TRUE TRUE FALSE FALSE ...
 $ sig_comparison_trend_crossDiffTotal              : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ sig_comparison_trend_crossDiffTotal_subgroupTotal: logi  FALSE FALSE TRUE FALSE TRUE FALSE ...str(tableplot_prepped)'data.frame':   85 obs. of  49 variables:
 $ depVar                      : chr  "bista" "bista" "bista" "bista" ...
 $ geschlecht                  : chr  "w" "w" "w" "w" ...
 $ TR_BUNDESLAND               : chr  "total" "Baden-Wuerttemberg" "Bayern" "Berlin" ...
 $ est_2009_none_mean          : num  32 63.2 45.9 27.8 23.6 ...
 $ est_2015_none_mean          : num  37.8 41 25.2 32 33.6 ...
 $ est_2022_none_mean          : num  50.5 29.1 30.3 71 47.8 ...
 $ est_2009_crossDiff_mean     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ est_2015_crossDiff_mean     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ est_2022_crossDiff_mean     : num  NA NA NA NA NA NA NA NA NA NA ...
 $ est_2009_crossDiffTotal_mean: num  NA 43.7 62 39.8 54.2 ...
 $ est_2015_crossDiffTotal_mean: num  NA 44.4 42.1 43.5 50.4 ...
 $ est_2022_crossDiffTotal_mean: num  NA 38.8 47 38.3 31.5 ...
 $ se_2009_none_mean           : num  0.797 2.668 2.099 2.883 2.308 ...
 $ se_2015_none_mean           : num  0.992 3.04 2.733 3.322 2.549 ...
 $ se_2022_none_mean           : num  1.06 3.8 3.24 3.6 3.17 ...
 $ se_2009_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ se_2015_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ se_2022_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ se_2009_crossDiffTotal_mean : num  NA 2.79 2.25 2.99 2.44 ...
 $ se_2015_crossDiffTotal_mean : num  NA 3.2 2.91 3.47 2.73 ...
 $ se_2022_crossDiffTotal_mean : num  NA 3.94 3.41 3.76 3.35 ...
 $ es_2009_none_mean           : num  -0.372 -1.495 0.36 0.694 -0.522 ...
 $ es_2015_none_mean           : num  0.749 0.459 -0.807 0.24 0.357 ...
 $ es_2022_none_mean           : num  0.487 0.605 -0.192 -0.536 1.106 ...
 $ es_2009_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ es_2015_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ es_2022_crossDiff_mean      : num  NA NA NA NA NA NA NA NA NA NA ...
 $ es_2009_crossDiffTotal_mean : num  NA -0.991 0.161 -0.482 0.71 ...
 $ es_2015_crossDiffTotal_mean : num  NA 0.198 0.104 -1.331 0.203 ...
 $ es_2022_crossDiffTotal_mean : num  NA -0.234 0.615 -0.133 0.784 ...
 $ sig_2009_none_mean          : logi  FALSE TRUE TRUE FALSE FALSE FALSE ...
 $ sig_2015_none_mean          : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ sig_2022_none_mean          : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ sig_2009_crossDiff_mean     : logi  NA NA NA NA NA NA ...
 $ sig_2015_crossDiff_mean     : logi  NA NA NA NA NA NA ...
 $ sig_2022_crossDiff_mean     : logi  NA NA NA NA NA NA ...
 $ sig_2009_crossDiffTotal_mean: logi  NA FALSE TRUE TRUE FALSE FALSE ...
 $ sig_2015_crossDiffTotal_mean: logi  NA FALSE FALSE FALSE FALSE FALSE ...
 $ sig_2022_crossDiffTotal_mean: logi  NA FALSE FALSE FALSE FALSE FALSE ...
 $ p_2009_none_mean            : num  0.0766 0.0398 0.0408 0.5275 0.1505 ...
 $ p_2015_none_mean            : num  0.154 0.232 0.35 0.27 0.223 ...
 $ p_2022_none_mean            : num  0.104 0.0835 0.3648 0.1522 0.0518 ...
 $ p_2009_crossDiff_mean       : num  NA NA NA NA NA NA NA NA NA NA ...
 $ p_2015_crossDiff_mean       : num  NA NA NA NA NA NA NA NA NA NA ...
 $ p_2022_crossDiff_mean       : num  NA NA NA NA NA NA NA NA NA NA ...
 $ p_2009_crossDiffTotal_mean  : num  NA 0.1776 0.0211 0.0474 0.481 ...
 $ p_2015_crossDiffTotal_mean  : num  NA 0.302 0.14 0.431 0.605 ...
 $ p_2022_crossDiffTotal_mean  : num  NA 0.2634 0.0822 0.14 0.4469 ...
 $ y_axis                      : int  1 2 3 4 5 6 7 8 9 10 ...?plot_lineplot
?plot_tablebarplotNeben der R-internen Hilfe zu den Funktionen sollten auch die online-Vorlagen verwendet werden.
Einstellungen zum Aussehen der Plots werden so vorgenommen:
?plotsettings_lineplot
?plotsettings_tablebarplotEs gibt dabei voreingestellte Setting-Objekte, die genutzt werden können:
plotsettings_lineplot(default_list = lineplot_4x4)trend_dat <- readRDS("I:/Methoden/02_IQB-interne_eat_Workshops/eatRep_2024/Beispieloutputs/04_meansAufbereitet.rds")Wir möchten einen Linienplot für eine Gruppe erstellen.
Die Beispiele finden sich hier.
Achtung
Die Beispiele dienen nur der Illustration und sind noch nicht final für den BT freigegeben. Bitte schaut zur Erstellung der Grafiken dann auf der Webseite vorbei.
plot_my_lineplot <- function(eatRep_kb){
kb_prepped <- prep_lineplot(
  eatRep_kb
)
plot_kb <- plot_lineplot(
  kb_prepped,
  years_lines = list(c(2009, 2015), c(2015, 2022)),
  years_braces = list(c(2009, 2015), c(2015, 2022)),
  plot_settings = plotsettings_lineplot(default_list = lineplot_4x4)
)
return(plot_kb)
}plots_6.6_kbs <- lapply(eatRep_kb_list, plot_my_lineplot )Für zwei Gruppen funktioniert das ganz ähnlich.
trend_dat_geschlecht <- readRDS("I:/Methoden/02_IQB-interne_eat_Workshops/eatRep_2024/Beispieloutputs/disp_geschlecht.rds")trend_dat_geschlecht <- readRDS("I:/Methoden/02_IQB-interne_eat_Workshops/eatRep_2024/Beispieloutputs/disp_geschlecht.rds")Wir möchten Abbildung 6.6 aus dem Geschlechterkapitel erstellen.
Die Beispiele finden sich hier.
Achtung
Die Beispiele dienen nur der Illustration und sind noch nicht final für den BT freigegeben. Bitte schaut zur Erstellung der Grafiken dann auf der Webseite vorbei.
**Das ist mein fettgedruckter Text**
*Das ist mein Kursiver Text*
Hochgestelltes<sup>a</sup>
Tiefgestelltes<sub>yaay</sub>
plot_my_tableplot_6.6 <- function(eatRep_kb){
kb_prepped <- prep_tablebarplot(
  eatRep_kb
  # ...
)
plot_kb <- plot_tablebarplot(
  kb_prepped
  # ...
)
return(plot_kb)
}plots_6.6 <- lapply(eatRep_kb_list, plot_my_tableplot_6.6)